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COHOMOLOGY OF OPERATOR ALGEBRAS, III.
REDUCTION TO NORMAL COHOMOLOGY

B. E. JOHNSON,
R. V. KADISON AND J. R. RINGROSE.

1. Introduction

We continue our study, begun in [7], [8], of the (topological) cohomology
of operator algebras. We consider two cohomology theories, the norm
continuous, and the normal (ultraweakly continuous), the corres-
ponding cohomology groups being denoted by H^ and H1^ respectively.
In our terminology and notation, we follow [7]. The two earlier articles
in this series are concerned primarily with the norm continuous case.
The present paper deals mainly with normal cohomology, and with
its relationship to norm continuous cohomology. We prove, in Sections 5
and 6, that H^. (31, ^Tl) == H^ (91, 3Vi) = H'i (91-, <m), whenever 91 is a
C*-algebra acting on a Hilbert space and JH is a dual normal 9l~~-module.
As an application of these results, we show (Corollaries 6.5 and 6.4)
that H^ (^, JH) == 0 whenever the von Neumann algebra (^ is either
type I or hyperfinite, and 3Tc is a dual normal ^-module; this had been
proved previously in the particular case in which 3VL = ̂  ([7], Theo-
rem 4.4; [8], Theorem 3.1; see also [5], Proposition 7.14).

In developing normal cohomology theory and relating it to the norm
continuous case, we need an extension theorem for n-linear mappings,
from a product of (concretely represented) C*-algebras into a dual
Banach space, which are (separately) continuous relative to the ultra-
weak and weak * topologies. Specifically, we prove, in Section 2, that
each such mapping extends, retaining the same continuity, to the product
of the corresponding von Neumann algebras. Although an extension
process of this type was used during the proof of [8] (Theorem 2.1), it
was possible in that particular situation to avoid the need of the full
form of the extension theorem.
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At one point we make use of a result of TAKESAKI [9] (Corollary 1),
which gives a characterisation of the ultraweakly continuous linear
functionals on a von Neumann algebra. Although originally stated in
a slightly different form, Takesaki's theorem is (easily seen to be) equi-
valent to the following assertion : a bounded linear functional on a von
Neumann algebra cR. is ultraweakly continuous if, and only if, it is comple-
tely additive on projections. The proof given in [9] exploits the properties
of the universal representation of ^l. In Section 3, we give a proof
within the framework of von Neumann algebra theory. For comple-
teness, we include an account of (the essentials of) the original argument
used in [9].

With 91 a C*-algebra and Jiz a two-sided dual 91-module, it was proved,
in [7] (Theorem 3.4), that each p in Z^ (91, Jll) is cohomologous to a
cocycle cr which vanishes whenever any of its arguments lies in the centre e
of 21. In Section 4, we show (Theorem 4.1) that this remains true when
€ is replaced by certain non-central subalgebras of 91. When 91 is
concretely represented and JIZ is a dual normal ^I^-module, Theorem 4.1
can be strengthened (Lemma 5.4) with the additional conclusion that o- is
(separately) ultraweakly continuous.

We recall some of the notation and terminology used in [7], [8]. With 91
a Banach algebra and 3\Z a (two-sided) 91-module, we describe ^l as a
Banach ^-module if the bilinear mappings (A, m) -> A m, (A, m) -^mA :
9{ X jn -^ jlZ are bounded. By a (continuous) n-cochain, we mean a
bounded /z-linear mapping from 91 X 91 X ... X 91 into OU, and we denote
by C? (91, OVi) the linear space of all such n-cochains. The coboundary
operator, from C? (91, <m) into C^1 (91, ori), is the linear operator A
defined by

(Ap) (Ao, .... A,,) == Ao p (Ai, ..., An)
n

+ ^(—— I)7 P (Ao, . . ., Ay-,, Ay-i Ay, A;+i, . . . An)

+(_l).+ip(Ao, ...,A,-OA.,

for p in C? (91, <m) and Ao, . . . , An in 91. We adopt the convention that
C°. (91, ore) is .m, and that (A m) (A) == A m — m A when m e 3Ti and
A e 91. For n == 1, 2, . . . , we define

B^ (91, JTI) = { ̂ : ̂ e Cr1 (%, on)},
Z^ (91, ̂ ) = { peC? (91, JTZ) : Ap = 0 }.

Elements of the linear space B^ (91, ^Tl) are called n-co boundaries, while
the linear space Z[! (91, 3Ti) consists of n-cocycles. Since A2 == 0, we have
B^ (91, cm) C Z^ (91, ori); the quotient space

H7^ (91, ̂ ) = Z? (91, OU)/B? (91, ̂ )
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is called the n-dimensional (continuous) cohomology group of 91, with
coefficients in 3Vi.

With 91 a Banach algebra and JTl a Banach 91-module, we describe <m
as a duaZ ^-module if .m is (isometrically isomorphic to) the dual space
of a Banach space mz^ and, for each A in 91, the mappings m -> A m,
m-^mA : OR -^ 3Xi are weak * continuous. If, further, 91 is a C*-alge-
bra acting on a Hilbert space ^C and, for each m in 3Vi, the mappings
A -> A m, A -> m A : 91 -> 3Ti are ultraweak-weak*continuous, we
describe OTi as a dual normal ^-module (the simplest example is obtained
by taking .m == 9I-, the ultraweak closure of 91). In the context of dual
normal modules, we denote by C^ (91, OR) the set of all elements p of
C'j (91, ^Tl) which are separately ultraweak-weak*continuous [with
C^ (91, 3Ti) = JTZ], and observe that A maps C^ (91, ^Z) into C^1 (91, ^Z).
We define

B^ (91, on) = { ^ : ̂ € C;r1 (91, <m) j,
ZS, (91, 3Yi) = { pe C^ (91, <m): Ap == 0 },
^^. (91, .m) = Z^ (91, ou)/5S, (91, ̂ ).

In this context, we refer to normal n-cochains, coboundaries, cocycles,
and we call H^ (91, OTi) the n-dimensional normal cohomology group.

The last two authors are indebted to the National Science Foundation
for partial support, and to Professor D. KASTLER for his hospitality at
the (< Centre de Physique theorique du C. N. R. S. a Marseille ", and at
the < ( Institut d'Etudes scientifiques de Cargese (Corse) ", during one
stage of this investigation. The second named author acknowledges
with gratitude the support of the Guggenheim Foundation.

2. Extensions of ultraweakly continuous multilinear mappings

After two preparatory lemmas, we prove the main result of this section
(Theorem 2.3), concerning the extension of n-linear mappings. When X
and Y are Banach spaces in duality, we denote by o- (X, Y) the weak
topology induced on X by Y.

LEMMA 2.1. — If 91 and 23 are C^-algebras acting on Hilbert spaces
X^, ^e<g respectively, and r is a bounded bilinear functional on 91 X 93 which
is separately ultraweakly continuous, then r extends uniquely, without
change of norm, to a bounded bilinear functional r-i on 91 X <S~ which is
separately ultraweakly continuous.

Proof. — For each A in 91, the mapping B -> T (A, B) is an ultraweakly
continuous linear functional S (A) on 93, and [[ S (A) \\ ̂  \\ r [] [[ A [j .
By the Kaplansky density theorem, S (A) extends without change of
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norm to an ultraweakly continuous linear functional T (A) on 93-. Thus,.
T is a bounded linear mapping from 91 into the predual (23-)^ of 23~^
and I ) T || ̂  |j T ||. Moreover,

T (A, B) = < T (A), B> (Ae9I, Be®),

where < , > denotes the canonical bilinear functional arising from the
duality between (93-)^ and 23-. Since T is ultraweakly continuous in its
first argument, for each fixed B in 93, T is continuous as a mapping
from 91 [with topology o- (91, (91-)^)] into (®-)^ [with topology o- ((93-)^,
23)].

With 9li the unit ball of 91, it follows from [1] (Corollary 11.9) that
T (9Ij) is relatively compact in the topology cr ((93-)^, 23-); so this topo-
logy coincides, on T (9li), with the coarser HausdorfC topology cr ((23-)^
93). This, together with the final statement in the preceding paragraph,
shows that T is continuous as a mapping from 9li, with the topology
o- (91, (91-),,), into (23-),,, with the topology o- ((93-%, 93-).

With TI defined by

T, (A, B) == < T (A), B > (A e 91, Be 93-),

Ti is a bounded bilinear functional on 91 X 23-, extends T, and satisfies
(I TI [| ̂  [| ^ [| -= I I ^- [| (whence, [ j T, [| == || T ||). For each B in 23-, the
linear functional A -^-z-i (A, B) on 91 is ultraweakly continuous on 9li
(hence on 91 [3], Theoreme \, p. 38), by the continuity property of T
established in the preceding paragraph. Ultraweak continuity of T, in
its second argument, for each fixed A in 91, is apparent since T (A) e (93-)^.
The uniqueness of such a bilinear functional Ti is an immediate conse-
quence of this continuity.

LEMMA 2.2. — If 91 and 93 are C*-algebras acting on Hilbert spaces X^,
S€^ respectively, OVc is the dual space of a complex Banach space DVc^, and
p : 91 X 93 -> ^Tl is a bounded bilinear mapping which is separately ultra-
weak-weak * continuous, then p extends uniquely, without change of norm,
to a bounded bilinear mapping p : 91 X 93- -> 3TL which is separately ultra-
weak-weak * continuous.

Proof. — When m e OTi and co e ̂ T^, we write <^ m, GO ^ in place of m (co).
With co in 3Xi^ and Z^ defined by

(1) Z, (A, B) = < p (A, B), co > (A € 91, B e 93),

Z,o is a bounded bilinear functional on 91 x23~~, with [] l^ | j ̂ || co [|.|| p |j,
and is separately ultraweakly continuous. By the preceding lemma, l^
extends uniquely, without change of norm, to a bounded bilinear func-
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tional L(,) on 91 x 93~, which is again separately ultraweakly continuous.
For each A in 91 and B in ®~, the mapping p (A, B) : w -> L^(A, B) is a
bounded linear functional on OYi^ (that is, an element of JTt), and
H p ( A , B ) | | ^ [ | p [ | . H A | | . | | B | | . Since

(2) < p (A, B), co > = L,, (A, B) (co e Jl^, A e 91, B e 93-),

it is clear that p is a bounded bilinear mapping from 91 X "S~ into J1Z,
-with [[ p |) ̂  [| p ||, and is separately ultraweak-weak * continuous. Since
L^ extends l^, it follows from (1) and (2) that p extends p (whence,
|| p [| == [[ p [ [ ) . The uniqueness of this extension follows by ultraweak-
"weak * continuity of o in its second argument.

THEOREM 2.3. — If 9li, . . . , 91/, are C^-algebras acting on Hilbert
spaces Xi, . . . , S€n respectively, JH is the dual space of a complex Banach
space 3U^, and p : 9Ii X . . . x9I/, -> 3Yi is a bounded multilinear mapping
which is separately ultraweak-weak * continuous, then p extends uniquely,
without change of norm, to a bounded multilinear mapping p :
Itty x . . . X 91,, -> 3Ti which is separately ultraweak-weak * continuous.

Proof. — We construct, in succession, multilinear mappings
po (== p), pi, p,, . . . , p,^ with the following properties : p^: maps
Ittyx . . . x9I^x9Ix:+i X . . . x9I/; into JTl, extends p^_i without change of
norm when k ̂  1, and is separately ultraweak-weak * continuous. This
proves the existence of a suitable p (== p/,); and its uniqueness results
from the stated continuity properties.

Suppose that 1 ̂ j ̂  n, and suitable po, . . . , py_i have been construc-
ted. For each fixed A] in 9Iy, . . . , A;_i in 9Iy_i, Ay+i in 9I/+i, . . . , An
in 9L, the mapping A/ -> py_j (Ai, . . . , A,,) of 9I/ into OTi is ultraweak-
weak * continuous, and has norm not greater than

[I p [|. 1 | A. ||... || A,-. [|. [I A^ | 1 . . . || A,, ||.

By weak * completeness of the unit ball in Jn, together with the Kaplansky
density theorem, it extends without increase of norm to an ultraweak-
weak * continuous linear mapping A/ -> py• (Ai, . .., An) of 9T/ into JU. It
is clear that py is an extension of p/_i to a bounded multilinear mapping
from 9Ii" X . . . x9l7x9I/+i X . . . x9I,,, with [| py [| = || p;-i [[, and that
p; is ultraweak-weak * continuous in its j'-th argument. It remains to
prove the same continuity in the remaining arguments.

To simplify the notation, let 23; denote 917 when 1 ̂  i <j, 91; when
j < i^n. With 1 ̂ k^n and k y ^ - j , choose and fix Ai in 93z for
each i = 1, . . . , n other than j, k. The bounded bilinear mapping a- :
9Iy X 2^ -> 3Tc, defined by

(3) o- (Aj, Ak) = p/-i (Ai, . . . , A/,) = p; (Ai, . . . , An),
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is separately ultraweak-weak * continuous, by our assumptions concer-
ning py-i. By Lemma 2.2, a extends to a bounded bilinear mapping o- :
Sty X 93 A- --> ^9 which is again separately ultraweak-weak * continuous.
Using this continuity, of both py and o- in the variable Ay, we deduce
from (3) that

-cr (Ay, A,) = py(Ai, ..., A,) (Ay € 9Iy, A, € 93,).

Since the left hand side is ultraweak-weak * continuous in A,, the same
is true of py (Ai , . . . , An).

3. Ultraweak continuity and complete additivity of linear mappings

In [9] (Corollary 1), TAKESAKI exploits the properties of the universal
representation of a von Neumann algebra ^R. to characterise the ultra-
weakly continuous linear functionals on (^ as those which are completely
additive (on families of orthogonal projections). We shall need this
result — or rather, an immediate consequence of it (Corollary 3.4)
characterising ultraweakly continuous linear mappings between von
Neumann algebras — in Section 5. It is surprising, at first glance, that
this basic result does not follow easily from the corresponding fact for
positive functionals. It seems worthwhile to have a proof entirely
within the framework of von Neumann algebras. We give such a proof;
and, for completeness, we include an account of (the essence of) Takesakfs
original argument.

Suppose that (K and ^ are von Neumann algebras, GJ is a bounded
linear functional on ^, and ^ is a bounded linear mapping from (^ into ^.

We say that co is completely additive if c*) ( V£a ) ^^^ (^a) for every

orthogonal family (Ey) of projections in .̂. Similarly, ^ is completely

additive if^^(£a) converges ultraweakly to H^-Ea)? for each such

family (£a). It is clear that ultraweak continuity, of &) or ^, implies
complete additivity; the main results in this section establish the equi-
valence of the two conditions. Before proving these results, we require
some lemmas.

LEMMA 3.1. — With E an (orthogonal) projection, distinct from 0 and J,
on the Hilbert space ^€ and a, b, c real numbers,

aE + b ( I — E ) + c [ E T ( I — E ) + ( I — E ) T * E ] ^ 0

for each T in the unit ball of(^ (^€), if and only if a and b are non-negative,
and ab ̂  c2.
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Proof.— Given a, 6 and ab—c2 are non-negative, and [| T [| ̂  1,
a < £ ^ > + 6<(J—£)n; ,a ;>

+ c < £T (J — E) x, x > + c < (J — £) T* E x, x^
=a\\Ex\\2+b\\(I—E)x\\•2

+ c [ < ^ T ( I — E ) x , E x y + ^ T ^ E x , ( I — E ) x y ]
^a\\Ex\\2 + b\\(I—E)x\\1

— 2 | c | \\(I—E)x\\.\\Ex\\^0,

for each x in ^€; since the quadratic form as2 + bt2 — 2 \ c [ st is positive
semi-definite.

Conversely, suppose
a E + b (I — E) + c [ E T {I — E) + (I — E) T* E ] ̂  0

with T* a partial isometry having initial and final projections one-dimen-
sional, dominated by E and I — E respectively. Restriction to the
two-dimensional subspace generated by the corresponding one-dimensional
subspaces yields a positive operator H. Considering the matrix of H
(relative to the obvious orthonormal basis), we conclude that a and b are
non-negative and ab ̂  c2.

LEMMA 3.2. — Suppose that GO is a bounded hermitian linear functional
on a uon Neumann algebra ^, and T] is a real number.

(i) If co (A) > r] for some positive A in the unit ball of (K, then there is a
projection E in (R, such that GO (E) > 'n; moreover, E can be chosen so that
co | E (K E is a positive linear functional if co is completely additive.

(ii) If [ co (F) | ̂  Y^, for every projection F in (K, then [| co [| ̂  4 -n.

Proof. —
(i) By the spectral theorem, there exists an orthogonal family

(£1, .. . , En) of projections in (^, and scalars 7i, . . . , \z in (0, 1), such
that |j A —]^/ Ej [| < H ex) |] -1 (c*) (A) — r,). Thus

n. n

o) (A) — ̂ ; co (Ej) < co (A) — Yi, ^^ co (£,) > 7?.
7=1 7=1

Renumbering if necessary, we may suppose that co (E/) > 0 (1 ̂ j ̂  m)
and co (£;) ̂  0 (m < j ̂  n), for some m with 0 ̂  m ̂  n. With

771

^ =2 '̂
7=1

/n w /t

M (£) =^ M (£,) ̂  1, co (£,) ̂  7, co (£,) > 7i.
y=i /=t y=i
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If oo is completely additive, let (Fa) be a maximal orthogonal family of
subprojections of E in ^ such that co (Fa) < 0; and let £o == £ —V Fa.
By the maximality assumption, co (F) ̂  0 for every subprojection £
of £o in <^, so GO £o ̂  £o is a positive linear functional. Furthermore,

co (£o) = co (E) — co (^^a) = co (£)—^co (Fa) ̂  co (E) > n.

(ii) If | co (£) | ̂  Y}, for every projection £ in (^, it follows, by
applying part (i) to both co and — co, that | co (A) | ̂  Y] for every
positive A in the unit ball <^i of .̂. Each R in <^i has the form
^ = Ai — A 2 + i (A3 —A4), with Ay a positive element of ^li, and

4

^wi^Si^^i^4^
THEOREM 3.3. — Each bounded completely additive linear functional co

on a uon Neumann algebra (K is ultraweakly continuous.

Proof. — We recall that the ultraweakly continuous linear functionals
on (^ form a norm closed subspace (K^ of the Banach dual space ^l* of (K,
and that a positive linear functional lies in <^ if and only if it is completely
additive ([3], Theoreme 1, (iii), p. 38; Exercice 9, p. 68). Given any
completely additive element co of ^* (not necessarily positive), we shall
prove that co e ̂  by showing that co can be approximated in norm by
elements of ̂ . Since the hermitian and skew hermitian parts of co are
completely additive, we may suppose, without loss of generality, that co
is hermitian and |[ co [[ ^_ 1.

If
(4) ^ = sup { co (A): A = A* e ̂ , 0 ̂  A ̂  I } ,

3
then O^fJ i^ |) co [| ̂  1. Given s such that 0 < e ^ . , there is a
positive operator £'1 in the unit ball of ffi such that co (£'i) > u. — 5.
By Lemma 3.2 (i), we may suppose that £'1 is a projection, and co | £\ 6{. £\
is a positive linear functional. Since co [ E^ (^ £1 is also completely addi-
tive, it is ultraweakly continuous. With £2 = I—£'1, co is the sum of the
four linear functionals co/^ (J , k = 1, 2), defined by co^- (R) = co (£y J?£^),
and co^i e ̂ . Note also that, if F is any projection in (^ satisfying F^E^,
then, by (4),

co (F) = co (E, + F) — co (£1) < ^L — (^ — s) = £.

We show next that [| 001,2 || and [| 00.2,1 [| are small. For this, suppose that
T is in the unit ball of ^l, and let

S = (1 —£)£i + ££2 + £^(1 —£^(£1 TE, + E, T*£i),
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so that

I — S = e E ^ +( l—£)£s,—^(l—£) ? (£ ,T£, +£,r*£,).

By Lemma 3.1, both S and I — S are positive; so O ^ S ^ I , and (4)
implies that

y- ̂  " (S) = (1 — e) co (£,) + sco (£,) + E? (i _ £)^(£, r^ +E, T*Et)

= i ( l — £ ) ( ^ — £ ) — £ +2e ?( l—£) ?Rey(£;l Tfy

=± ^ — (^ + 2) £ + 2 8^(1 — e)^ Re co (£, TE,).

0

Since p. ̂  1 and 0 < 5 ̂  ,,—4

Re 0)1,2 (T) = Re co (£'1 T )̂

^|^+2)£T(l-£)-^3v/£.

This last inequality is valid for all T in the unit ball of ^; so (| w^ (| ̂  3 </s,
and similarly [| 00.2,1 f | ̂  3 y/^. Thus

We prove next that [| ̂  + c^o [| ̂  4 s + 6 y^, for some c^o in ^.
For this, we consider the restriction v = = — & ) [ Ea <^ £2, which is a
completely additive linear functional on E^ ^ E^ satisfying [[ v \\ ̂  1 and
v (F) > — £ for each projection F in E^ E^ By applying to\ the
argument used above for GO, we deduce the existence of projections F,
and F-2 in £2 ̂  E^ with sum E._, satisfying the following conditions : if,
for j, k == 1,2, a linear functional ^ on £2 ̂  £"2 is defined by
^(5) = ^ {F^• SFk)(S€E..^E^, then ^1,1 is ultraweakly continuous,

(6) 1 1 ^ — ^ 1 , 1 — ^ 2 , 2 [|^6 y/i

and v (F) < s for each projection F in £2 ̂  £2 such that F ̂  F^ This
last inequality, together with our previous result in the reverse direction,
shows that | v (F) \ < e for each projection F in F^ ^ Fo. By Lemma 3 2
(ii), [) y F2 ̂  F, \\ ̂  4 s; whence

I ̂  (5) | == | v (F, SF,) | ̂  4 £ f| F,^2 f| ̂  4 £ 1| S f|

(5e£:2 ̂  £2), and || ^,2 |j ̂  4s. This, with (6), yields

l l^—^il l^s+e^s.
BULL. SOC. MATH. —— T. 100. —— FASC. 1 a



82 B. E. JOHNSON, R. V. KADISON AND J. R. RINGROSE

With ooo, defined by ^0 (R) == v^i (E^ RE^) for R in (H, we have coo<S^
and

| (C^O + ^2,2) CK) | = | ^1,1 (̂ 2 ̂ ) + CO (£2 RE^) |

= | (^——^)(£2^2)|

^|K,——. [l.|[ £2.RE2t|

^ ( 4 s + 6 v / £ ) [ | ^ | ) (J?€^).

Thus [| c*)o + €1)2,21| ̂  4 £ + 6 v/s and, by (5),

[| &) — Gi)^i 4- ^o [| ̂  4 s 4- 12 ^/s.

Since ̂  is closed, and the above construction of wo, &)^j in <^ is possible
for each positive £, it follows that &) e (^^.

COROLLARY 3.4. — Each bounded completely additive linear mapping
^, from a von Neumann algebra (^ into another such algebra ̂ , is ultraweakly
continuous,

Proof. — Suppose GD e 'S^. For each orthogonal family (£a) of projections

in < .̂, ̂  \ (£a) converges ultraweakly to ^ ( ̂  Ey. ), and thus

^(^a))==^C.e (£,)).

It follows that the linear functional 01) o ^ : A —^ G>) (E (A)) on (̂ . is comple-
tely additive. By Theorem 3.3, (i) o \ is ultraweakly continuous. Since
this is so for each w in ^, \ is ultraweakly continuous.

REMARK 3.5. — Suppose that co is a bounded linear functional on a
von Neumann algebra di, whose restriction to each maximal abelian
subalgebra of (R. is ultraweakly continuous. With (Ey) an orthogonal
family of projections on ^, there is a maximal abelian sublgebra d of cR.
which contains each E^. The ultraweak continuity of the restriction

(») | Ci implies that & ) ( V £ a ) = = ^ , ^ C^a); so c*) is completely additive.

By Theorem 3.3, c*) is ultraweakly continuous on ^. Thus Theorem 3.3
implies the following result of TAKESAKI ([9], Corollary 1) (and is, essen-
tially, equivalent to it). We conclude this section with a second proof,
closely parallel in its broad outline with the ideas used in [9].

THEOREM 3.6. (TAKESAKI). — A bounded linear functional w on a von
Neumann algebra ̂  whose restriction to each maximal abelian sulalgebra
of (^ is ultraweakly continuous, is ultraweakly continuous on dL
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Proof. — Since it suffices to prove the result for any von Neumann
algebra isomorphic to ^R., we may assume (just as in the proof of [8],
Theorem 2.1) that ^ = (Ro P» where dio acting on ^€o is the universal
representation of (K, and P is a central projection in (^. Since ^ is
ultraweakly closed, (^ == (^o P == ^o P.

When we refer to the ultraweak topology on ^-o or (^7, we mean the
one arising from the action of those algebras on ^Co. By the ultraweak
topology on ^ (= ^7 P C (^7), we mean the one arising from the
action of (^ on P (^Co), and this coincides with the restriction to ^ of the
ultraweak topology on di~o.

With f a bounded linear functional on cfi, we denote by fp the bounded
linear functional A -> f(AP) on d^o, and by fp the extension of fp to an
ultraweakly continuous linear functional on ^7. Since ̂  = <^7 P C ^7,
the restriction fp \ (^ is an ultraweakly continuous functional on dl.

If f is ultraweakly continuous, then so is the linear functional g :
A -> f (AP) on <^7. Since g and fp have the same restriction, fp, to cfio,
their ultraweak continuity entails g == fp. Thus

fr (AP) = g (AP) = /• (AP) (A € ̂ 7),

and so f = fp <^. This, with the preceding paragraph, shows that f
is ultraweakly continuous if and only if f == fp \ ̂ .

Accordingly, we have to show that ex) == wp | ̂ . As in the proof of
Theorem 3.3, we may assume that co is Hermitian, and the same is then
true of en) — (cop | (Ji) (= ^). Furthermore,

(7) g (AP) = a) (AP) — cop (AP)
== c^ (A) — cop (AP) == ojp (A — AP) (A e ̂ o).

Since w and c»)p [ ^l are completely additive (c«jp [ c^, because it is ultra-
weakly continuous), the same is true of g.

If g ̂  0, then (/ (£'o) 7^ 0 for some projection £'o in <^; we may assume
^ (£'o) > 0. The (< exhaustion " argument, used during the proof of
Lemma 3.2 (i), now shows that g \ Ei di £1 is a non-zero positive linear
functional (and, of course, completely additive), for some non-zero subpro-
jection Ei of £0 in <^. It follows that g \ Ei (R Ei is ultraweakly conti-
nuous (see the first sentence of the proof of Theorem 3.3). Hence the
linear functional h : A -> g (Ei AEi) on ^ is non-zero and ultraweakly
continuous (whence, h == hp ^). By (7),

hp (A) = hp (A) = h (AP) == g (E, APE,) = ̂  (E, AE, (I — P)),

for each A in ^o. By the ultraweak continuity of hp and cx)p, we have
hp (A) == up (Ei AE, (I — P)), for all A in ^7. Thus hp (AP) == 0
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when A e ̂ 7. It follows that

h = hp | ̂  == Jzp | (^ P = 0,

contradicting our earlier conclusion that h -^ 0. Thus ^ == 0 and c») == ojp | ̂ l.

4. Adjustment of cocycles relative to an amenable subalgebra

With 91 a C*-algebra and 3Vi a two-sided 91-module, [7] (Theorem 3.4)
asserts that each p in Z^ (91, 3U) is cohomologous to a cocycle which
vanishes whenever any of its arguments lies in the centre C of 91. In
this section, we obtain a stronger result of the same type (Theorem 4.1),
in which 91 is a Banach algebra and C is a closed subalgebra (not neces-
sarily central) which is amenable in the sense of [5] (Section 5). Before
proving this theorem, we recall and slightly augment some results from [5].

Let 91 be a Banach algebra. Elsewhere, in [7], [8] and the present paper,
we assume for simplicity that our 91-modules 3Ti are unital (1 m= m 1 = m
for each m in ^Tl), when 91 has an identity element 1. This assumption
is not in force in the present section : the discussion in [5] (Section 1 (c))
shows that the choice between using unital or more general modules is a
matter of minor convenience only. Suppose that JH is a two-sided dual
91-module, so that Jll is (isometrically isomorphic to) the dual space of
a Banach space ^Tt^, and the linear mappings m-^ A m, m — ^ m A :
JTL -^ DM are weak * continuous, for each fixed A in 91. In view of this
continuity, these mappings are the ad joints of certain bounded linear
operators acting on 3Vi^, which we denote by w -> w A, co -> A co, respec-
tively. In this way, 3\i^ acquires the structure of a Banach 91-module.
Thus the class of " dual 91-modules ", considered in [7], [8], coincides with
the class { X* : X is a Banach 91-module i, used in [5].

We denote by ^ , )> the bilinear functional on 3YL x ^H^, arising from
the duality between Yd and 3Vi^ With p a positive integer, C? (91, ̂ )
is isometrically isomorphic to the dual space of the projective tensor
product 9I09l(g). . . (g)9l(g)^,an element \ of C? (91, 3}t) correspon-
ding to the linear functional ^, defined by

i(Ai (g)...(g)A^(g)&)) ==<^(Ai, . . . ,A^),GJ>,

for all Ai, ..., Ap in 91 and co in 3Ti^. We recall, from [5] (Section 1 (a))
that C^ (91, ^t) has a dual 91-module structure defined by

(Ao c,) (Ai, . . ., Ap) == Ao E, (Ai, . . ., Ap),

\ p~~^
(8)< (^Ao)(A,, . . . , Ap) ̂ (—l)^(Ao, .. .,A;_,,A;A^,A^, .. .,Ap)

+(—l)^(Ao, . . . , A p _ , ) A p .



COHOMOLOGY OF OPERATOR ALGEBRAS 85

Furthermore, H^P (91, on) ̂  H'i (91, C? (91, .m)), n = 1, 2, .... The
ideas just described are analogous to methods, used by HOCHSCHILD
([4], Section 3), in the purely algebraic setting.

We recall, from [5] (Section 5), that a Banach algebra 91 is said to be
amenable if H\ (91, 3Yc) = 0, for every two-sided dual 91-module ;)Tt.
This condition entails H'^ (91, JlZ) = 0 (n == 1, 2, ...), for each suchJIZ,
in view of the discussion in the preceding paragraph. Postliminal
C*-algebras (in particular, abelian ones) and uniformly hyperfinite
C*-algebras are amenable ([5], Theorem 7.9, and remarks, following the
proof of Lemma 7.13; [8], Corollary 3.4).

With 91 a Banach algebra, 3Vc a two-sided dual 91-module, and k a
positive integer, C^ (91, cTIZ) can (as usual) be identified with the dual
space o f 9 I ( g ) 9 I ( g ) . . . ( g ) 9 I ( g ) ^11 ,̂ and has a dual 91-module structure
(in addition to the one described above) defined by

(9)
( (AQ (A,, . . . A) == ^ (Ai, ..., A,_,, A, A),
( (^A)(A,,...,A,)^(A,, ...,A,)A.

This process can be applied, with 3\i replaced by the module Cf (91, ̂ )
defined in (8), to give C^ (91, C? (91, 3Yi)) the structure of a dual 91-module.
The equation

^ (Ai, . . . . Ak+p) = ̂  (Ai, . . . , Ak) (A^+i, .... Ak+p)

defines an isometric linear isomorphism ^ -^ ^ from C^ (91, C^ (91, 3Yi))
onto Ck+p (91, c71Z). This isomorphism is weak * bicontinuous, since it is
the adjoint of the natural isomorphism between the appropriate predual
spaces, arising from the associativity of tensor products. It can therefore
be used to transfer the dual 91-module structure from C^ (91, C? (91, ^Z))
to C^1' (91, ^i). When this is done, the module operations are given by

(Ay (Ai, . . . , Ak+p) = ^ (Ai, . . . . Ak-i, Ak A, A^+i, .... Ak+p),
eA)(A,, ...,A,^)

== ^ (Ai, . . ., Ak, AA^-i-i, Ak+29 • • • ? Ak+p)
(10)

+ ̂  (— I)7 ^ (Ai, . . . , A/,, A, AA.+I, .... Ak+; Ak^+i, ... ,Ak+p)

+ (— \Y ^ (Ai, . . . , A^ A, A/.+i, .... A^^_i) A^-^

for ^ in C ^^(91, 1̂) and A, A,, .... A,^ in 91.
If jyi is a two-sided dual module for a Banach algebra 91, and 91 is a

weak * closed 91-submodule of 3Ti, then ffi is itself a dual 91-module;
for sn is (isometrically isomorphic to) the dual space of a quotient space
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of DVC^ and the weak * topology on ffi coincides with its relative weak *
topology as a subspace of 3R.

THEOREM 4.1.— Ifc^ is a closed amenable subalgebra of a Banach algebra
91, <m is a two-sided dual ^-module and o s Z? (91, ^), there is a ? in
Cr1 (91, Oil) 5ucA that

(P — ̂  (Ai, . . . , A,,) == 0 if any one of Ai, . . . , An lies in d3.

Proof. — We construct, inductively, ^,, . .., ^ in C?-1 (91, <m) such
that (o — A ^) (Ai, . . . , A/,) == 0 if any one of A,, . . . , Ak lies in ^. The
conclusion of the theorem then follows, with ^ = ̂ .

To constructs ' ^ , we consider C?-' (91, ^1Z) as a dual 91-module (hence,
also, a dual ^-module), with the structure defined by (8) when p == n — 1.
We define ^ in C,1 (d3, C^-1 (91, J1Z)) by

o' (5) (A,, . . . , A,) =: p (B, A,, . . . , A,) (B€^3; A,, . . . , A,€9I).

By use of the coboundary formula and (8), we obtain

0=(Ap)(Bo,Bi,A,, ...,A,)
= (Bo ^ (B,) — 3 (Bo B,) + ^ (Bo) BQ (A,, ..., An),

for all Bo, Bi in <i3 and Aa, . .., An in 91. Thus 3eZ<1 (^, C?-1 (91, JTL)).
Since d3 is amenable, there exists ^ in C?-1 (91, cM) such that

^ (B) = BE, — ^ B (BecO). With B in ^ and A,, . . . , An in 91, we
deduce from (8) that

p (B, A,, ..., An) = 3 (B) (A,, ..., A,)
= (B ̂ ) (A2, ..., A,) — (̂  B) (A,, ..., A,)
=(Ay(B,A,, ...,A,).

This proves the existence of a suitable cochain i;i.
Suppose now that 1 ̂ k < n, and a suitable cochain ^ has been

constructed. With p — A^. demoted by o-,

(11) o- (AI, . . . , A/,) ==0 if any one of Ai, . . . , A/, lies in d3.

In order to continue the inductive process (and so complete the proof of
the theorem), it suffices to contruct ^ in C'?-^, 3n) such that
cr — AS [== p — A (^ + S) = p — A^+i, with ^-M = ̂  + t\ vanishes
whenever any one of its first A- + 1 arguments lies in (^. To this end, we
consider C^-1 (91, ^Z) as a dual 91-module (hence, also, a dual ^-module),
with the structure defined by (10) when p == n — 1 — 7c. In the case
^ == n — 1, we have p == 0, and (10) is interpreted as (9).
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Let 91 denote the linear subspace of C?"1^, JTl) consisting of all
cochains r\ satisfying the conditions

(12) Ti (Ai, . . . , A,,_i) =0 if any one of Ai, . . . , Ak lies in d3,

and
(13) B [-n (A,, ..., An-i)] == -n(BAi, A,, . . . , An-i),
(14) Y? (Ai, . . . , Aj-i, Aj B, A;+i, ..., An-i)

= -n (Ai, . . . , A;, BAy+i, Ay+2, . . . , A^_i)

whenever Ai, ..., An_ie9I, 1 ̂ j < A", and Be^. A routine argnment
shows that 91 is weak * closed in C^~1 (91, 3U), and is a ^3-submodule
of CJ-1 (91, jn) [recall that the module structure is defined by (10)].
Thus 91 is a dual ^-module.

If -n^yc, Ai, . . . , A^e%, 1 ̂ j ^k and A/e^, it results from (12),
(13) and (14) that all terms but thej-th and (j + l)-st in the formal expan-
sion of (AY}) (Ai, . . . , An) are zero, while the two remaining terms have
sum zero. Thus

(15) (Ayy) (Ai, . . . . An) =0 if r\^.9t and any one of Ai, . . . , Ak is in d3.

We define 3 in C^ (ft, C?-1 CM, .m)) by

3 (B) (Ai, . . . , An-,) = cr (Ai, . . . , A^ B, A^i, .... A^-i).

From (11) and the relation (Ao-) (Ai, . . . , A/c+i, 5, A^+s, . . . » An) = 0
(with Ai, . . . , An in 91, B in d3, and one of Ai, . . . , Ak in d3), it follows
that 3 (B) satisfies (12), (13) and (14). Thus ^ (B) e 9t, and ^ e C<1 (d3, ^r).
By use of the coboundary formula, (11) and (10), we obtain

0 = (Ao-) (Ai, . . . , Ak, B^ B^, Ak+i, ..., A,,-i)
==(—iy (B, ^ (B,) — ^ (B, B,) + 3 (B,) B,) (Ai, . . . . A,_0,

for all 5i, Ba in ^3 and A,, .... A,,-i in 91. Thus ^eZ; (d3, ^r). Since d3
is amenable, there exists -n in <^[^ C^~1 (91, ^)] such that
3 (5) = B 73 — y? B (Be<^). With Ai, .... An-i in 91 and B in d3, it
follows from (12) and (10), that

(ATI) (Ai, ..., Ak, B, Ak+i, ..., An-i)
= (—— 1)^ h (Al» • • • » ^-1» A^ ^» Ay^+i, . . ., An-i)

— Y] (Ai, . . . , Ak, BAk+i, Ak+2, ..., An-i) +...
± Y? (Ai, . . ., Ak, B, Ak+i, . . ., An-3, An--2 An-i)

=h r] (Ai, . . . . Ak, B, Ak+i, ..., A,,_2) An-i]
== (— iy (B^—n B) (A,, . . . , An-i)
=(-l)^(B)(Ai,...,An-i)

== (— 1)^ o- (Ai, . . . , Ak, B, Ak+i, . . . , An-i).
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The last equation, together with (11) and (15), shows that, if ^ = (—1)^ -n,
then o- — A^ vanishes when any of its first k + 1 arguments lies in ^3.
As noted above, this completes the proof of the theorem.

5. Normal cohomology

Our main purpose in this section is to prove that, in a sense explained
below, H^ (91, Jn) = H^ (91, JTi) whenever 91 is a C*-algebra acting on a
Hilbert space S€, and JTc is a two-sided dual normal 9I~-module. We
begin by stating two auxiliary results which slightly generalise
Lemmas 3.1 and 3.2 in [7], and are proved by the same methods.

LEMMA 5.1. — If"91 is a Banach algebra with centre e, CD is a subalgebra
of e, Yd is a two-sided Banach ^i-module, l^k^n, and p in Z;1 (91, ^i)
vanishes whenever any of its first k arguments lies in ^, then

p (Ai, . . . . Ay-i, DAj, Ay+i, . . . , An) = D p (Ai, . . . , An)

whenever 1 ̂ j^A, De.(Q and Ai, . . . , A^€9I.

LEMMA 5.2. — J/'9l is a Banach algebra with centre e, (^ is a subalgebra
of e, 3TL is a two-sided Banach yi-module, n ̂  1, and p in Z? (91, V^i)
vanishes whenever any of its arguments lies in (^, then

p(Ai, ..., Ay-i, DAy,A;+i, ...,A,,)==Dp(Ai, . . . ,A^)=p(Ai, . . . , A n ) D

whenever 1 ̂ j ̂  n, D € ̂  and Ai, ..., An e 91.

LEMMA 5.3. — Suppose that 91 is a unital C^-algebra acting on a Hilbert
space ^€, V is a finite subgroup of the unitary group of the centre C of 91, (^ is
the subalgebra of e, generated (linearly) by V, and (^ is a closed amenable
subalgebra o/'9I. If^t is a two-sided dual normal ^i-module, n ̂  1, and
p in Z^ (91, ̂ ) vanishes whenever any of its arguments lies in (^, there is a
\ in C^-1 (91, c)Tl) such that p —A^ vanishes whenever any of its arguments lies
in either (^ or ^3.

proof. — Since V is a finite group, it has a unique invariant mean ^,
With cp a mapping from V into JU and p. : l^ (V, ^i) -> ̂  defined as
in [7] (Lemma 3.3), we have

V (?) - r1 2 ? (^
^ev

where q is the order of V. We refer to p. (cp) as the mean of cp.
The argument that follows is closely analogous to the proof of [7]

(Theorem 3.4). With ^ the zero element of C^-' (91, ^), we define
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^i, ..., ̂  in C^~~1 (91, 3Vi), inductively, as follows. Having constructed^,
let cr = p — A^. [ e Z^, (91, ^)], and set

(16) Y? (A,, . . . . A,-,) = q-1^ V* cr (A,, . . . , A,, Y, A,^, ... , A.-Q,
^€^7

so that r] eC^~1 (91, c)Tt) and Y] (Ai, ..., An-i) is the mean of the
mapping

V -> V* <7 (Ai, . . . , A,, V, A,-M, .... An-.): ^c)U.

We then define ^+1 to be ̂  + (— iy -n [ € C;^-1 (91, .)U)]. Exactly as in
the proof of [7] (Theorem 3.4), we can show, by induction on J'c and making
use of Lemmas 5.1 and 5.2, that

(17) (p — A^) (Ai, . . . , A,,) == 0 if any one of Ai, . . . , Ak lies in (Q.

We claim also that

(18) (p — A^y) (Ai, . . . , A,,) == 0 if any one of Ai, ..., An lies in ^3.

Once (18) is proved, the conclusion of the theorem follows, with ^ == ,̂.
Since p vanishes when any of its arguments lies in d3, (18) is equivalent to

(19) (A^y) (Ai, .... An) == 0 if any one of Ai, .... An lies in ^3.

This last condition is obviously satified when j = 0, since ^o is the zero
cochain. With 0 ̂  k < n, we make the inductive assumption that (19)
holds whenj = k. In order to show that (19) is true also whenj = k + 1,
it now suffices to prove that

(20) (AT)) (Ai, ..., A,,) ==0 if any one of Ai, ..., An lies in ^3,

since ^+1 === ^ + (— 1̂  ^.
Since o- = p — A^,

(21) o" (Ai, . . . , An) === 0 when any one of Ai, . . . , An lies in d3;

for p and A^ both have this property (the latter, by our inductive assump-
tion). By considering (Ao-) (Ao, . . . , An) when some A/ is in d3, we deduce
from (21) that

(22) Ao cr (Ai, . . . , An) == cr (Ao Ai, A^, .... An) if Ao € ̂ ,

CT (Ao, . . ., Ay-2, Ay_i Ay, A/+i, .... An)

(20) == 0" (AO, . . ., Ay—1, Ay Ay+1, Ay-)--2, . . ., An)

if 0 < j < n and A/e^,

(24) CT (Ao, . . ., An-2, An-l An) = CT (AQ, . . ., An-i) An if A^€^.
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From equations (21), ..., (24) and the definition (16) of 73, it follows
that

(25) r? (A,, .... A^Q = 0 if any one of A,, ..., A^ lies in d3,
(26) Ao r, (A,, . . . , A._0 = r, (Ao A,, A., . . . , A._0 if Ao€d3,

„ _ , 7} (Ao' • • - A7-9-. A/-! A/, A;-M, ..., A,_0
(27) == y, (Ao, . . . , A;_i, A; Ay^, A,^, ..., A,_0

if 0 < 7 < n — l and Aye^,
(28) 7} (Ao, .... A,_3, A,_, A,_0 = 7, (Ao, ..., A,_,) A,-, if A,_i e d3.

Each of equations (25), and (26), (27), (28) in cases where j ̂  k in the
condition A/ e ̂ , follows from a single application of one of (21), .. (24)
Whenj = k, (26), (27) and (28) each requires two applications of appro^
pnate equations from (22), (23), (24), and use of the fact that A, V = YA,
for each V in V.

With Ai, ..., An in 91 and A, in d3 for somej, it follows from (25), .... (28)
that all terms except the j-th and (j + l)-st in the expansion of (AY})
(A,, .... A,,) are zero, while the two remaining terms have sum zero.
This proves (20), and completes the proof of the lemma.

LEMMA 5.4. — If <p is a faithful representation of a unital C*-algebra 91,
<B is a closed amenable subalgebra of 91, OR is a two-sided dual normal
? (^--module, n ̂  1 and p e Z? (cp (91), 1̂1), there exists ̂  in C7;-1 (9 (91), 3\t)
such that p — A£ € Z^ (cp (91), ;m) and p — A^ vanishes if any of its argu-
ments lies in 9 (d3).

Proof. — Just as in the proof of [8] (Theorem 2.1), we way suppose
that cp (A) = AP, w^here 91 acting on S€ is the universal representation,
and P is a projection in the centre C of 9I-. Thus cp (91) = 91 P and
? (91)- == 91- P. Let V be the subgroup ; J, 2 P — I } of the unitary
group of C; so that the linear span of V is a subalgebra dd of C, containing
P. Note that JIZ becomes a two-sided dual normal 9I--module, such
that P m == m P == m (/ne^iz) if the left and right actions of 91- on 3Xi
are defined by

(29) Ajn=APm, m A = m AP (A €= 9I-, m € <M).

Since cp is a faithful representation, d3 P [== cp (d3)] is a closed amenable
subalgebra of 91 P. In view of Theorem 4.1, it is sufficient to consider
the case in which peZ? (91 P, JTc), and p vanishes whenever any of its
arguments lies in ^ P. It follows that pi, defined by

pi (A,, ...,A,)=p(A,P, ...,A.P) (Ai, ...,A,€9I)
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is in Z^ (91, JTc), and pi vanishes whenever any of its arguments lies in d3.
Since 91 acting on ^C is the universal representation, every norm continuous
mapping from 91 into Jll is ultraweak-weak * continuous; in particular,
pi is (separately) continuous in this sense in each of its arguments [so
pi€Z^(9I, 1̂1)]. By Theorem 2.3, pi extends to an element pi of
C;;, (91-, .Tc). Since

(30) (Api)(Ai,...,A,^i)=0

whenever Ai, . . . , A^+ie9I, it is readily verified (extending in one
variable at a time, as in the proof of [8] (Theorem 2.1)) that (30) holds
also when Ai, . . . , A/,+i lies in 9I-. Thus pi€Z^ (9I-, 3\t) and (by a
similar but simpler continuity argument, extending in one variable at a
time) pi (Ai, . . . . A,,) = 0 whenever Ai, . . . , A^e9I- and some Ay
lies in d3.

By Lemma 5.3 (with 91- and pi in place of 91 and p respectively),
there exists ^ in CS71 (9I-, OU) such that pi — A^i [ e Z^ (9I-, <m)]
vanishes whenever any of its arguments lies in either (^ or <B. Since
P e ̂ ?, it follows, from Lemma 5.2, that

(31) (p, — A^i) (Ai, . . . . A.) = P (pi — A^i) (Ai, .... A.)
==(pi—A^i)(PAi, ...,PA.),

whenever Ai, . .., A,^e9I-. The faithful representation A -^ AP of 91
is isometric, so we can define ^ in C^~1 (91 P, ^U) by

E (Ai P, . . . , A.-i P) == Ei (Ai, .... A._i) (Ai, . . . . A.-i e 91).

Thus, by (29),

(p—AO(AiP, ...,A.P)
== pi(Ai, . . . ,A.)—AiPS(A2P, ...,A,P)

+ S (Ai A, P, A3 P, .... A. P) — ...
±^(AiP, ...,A._,P,A.-iA,P)^^(AiP, ...,A,_iP)A.P

= pi (Ai, .... A,,) — Ai ^i (A^, . . . , An)
+ ci (Ai A^, A:>., ..., A,,) — ...
j^ î (Aj, . . ., A^--2» Art_-i A/^) ^^i (Ai, . . ., A.n—i) An

= (pi — A^i) (Ai, ...,A.).

Since this last quantity is zero when any Ay lies in d3, p — A^ vanishes
when any of its arguments lies in d3 P [= cp (^)]- Furthermore, it now
follows from (31) that p — A^ = (pi — A^i) | 91 P, the restriction to 91 P
of pi — A^i [eZ^, (9I-, <m)]; and therefore p — A^eZS, (91 P, .m).
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LEMMA 5.5. — If^ is a faithful representation of a unital C^-algebra^
and 3Xi is a two-sided dual normal cp (^--module, then

^ (? (91), 3Xi) n Z^ (9 (91), 3X0) = B^ (cp (91), ou) (n = 1, 2, . . . ) .

Proof. — Just as in the proof of the preceding lemma, we may assume
that 91 acting on S€ is the universal representation and that
? (A) == AP (A e 91), for some central projection P in 9I-. Furthermore,
3TL is a two-sided dual normal 9l--module, with the action of 91- on 3Ti
defined by (29).

Suppose that p e Z^ (91 P, JTi) and p = A^ for some ^ in C? -1 (91 P, .M).
We construct pi in Z^ (91, .m) and its extension pi in Z^ (9I-, OU), exactly
as in the proof of Lemma 5.4. Furthermore, the equation

Si (Ai, . . . , A._i) = ^ (Ai P, ..., A,_i P) (Ai, . . . , A.-i€9I)

defines an element ^ of CF1 (91, ^1Z). Since 91 acting on S€ is the
universal representation, ^ is (separately) ultraweak-weak * continuous
in each argument, so Ei€CS71 (9t, <m). By Theorem 2.3, ^ extends to
an element ^ of C;71 (9I-, on). It is readily verified that, for Ai, .... An
in 91

(pi — A^i) (Ai, . . . , A,) = (p — A^) (Ai P, . . . . An P) = 0.

Since pi —A^eZ^ (9I-, ore), it follows from continuity that pi ==Al|i.
Hence p^ = A^, where p.^ in ZS. (91 P, ^Z) and £2 in C7^1 (91 P, c)U) are
obtained by restricting pi and ^ to 91 P (C^I- P C %-).

We assert that p^ = p. For this, note first that p extends to an ele-
ment p of CS, (91-P, 3}t), by Theorem 2.3. With a defined by a- (Ai,.... An)
== p (Ai P, ..., A/, P) when Ai, .... A,,e9I-, cr lies in CS, (9I-, :ni),
as does pi. Since o- [ 91 == pi == pi 91, it follows by ultraweak-weak *
continuity that cr = p,. With Ai, .... An in 91,

pi (Ai P, . . . , An P) = cr (Ai P, . . . . An P)
=p(AiP, ...,A,P)=p(AiP, ...,A,P).

Thus p = pi [ 91 P == pa = A^.

We have now shown that, if peZ7^ (91 P, 3rc) and p = A^ for some £
in Oj-1 (91 P, ^IZ), then p = A^, for some ^ in C;^-1 (91 P, ^1); in other-
words,

Z^ (91 P, ^z) n B? (91 P, J1Z) c BS, (91 P, .m).

The reverse inclusion is apparent, so the theorem is proved.
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Suppose % is a unital C*-algebra acting on a Hilbert space ^€, and Jll
is two-sided dual normal 9l~-module. For each p in Z^, (91, JTl), the coset
p + B^ (91, 1̂1) [ e H^ (91, JTZ)] is a subset of the coset p + B^ (91, <)U)
[€^ (91, 3Ti)], Hence there is a natural homomorphism

<D : p + B^ (91, ̂ ) -> p + B^ (91, c)U)

from H^ (91, ^Tt) into H^ (91, .>rt). This homomorphism is one to one
by Lemma 5.5, and has range the whole of H^ (91, 3YL) by Lemma 5.4.
We have therefore proved the following result.

THEOREM 5.6. — 7/91 is a unital C^-algebra acting on a Hilbert space S€,
and OTt is a two-sided dual normal ^--module, then

H^ (91, 3Vi) - H^ (91, ^Z).

Let ̂  be a von Neumann algebra. If it is the case that H^ ( .̂, (R.) = 0,
then we have the following Tauberian result : if ^ e C^ (^K-, CR) and
A^eZ^,(<X,^), then ^eC^(^,^). To prove this, note that
A^eZ^ (<^, ^) == 5^ (^, ^), and so A^ = ̂  for some ^i in C^ ( ,̂, ^l).
Since A (^ — ̂ ) =0, ^ — ^i is a derivation on (K, and so ultraweakly
continuous by [6] (Lemma 3). Thus ^ — ^i e C^, (^, CR), and

^=^ i +C;—Si)€C^(^,^).
In fact, the Tauberian result is true for any von Neumann algebra ca.
We give two proofs, one based on the normal cohomology theory developed
in this section, the other exploiting the characterization of normal linear
mappings given in Corollary 3.4.

LEMMA 5.7. — If ̂  is a von Neumann algebra, ^eQ. ((̂ , l̂) and
A^eZ2^ ( ,̂ ̂ ), then ^e= C\, (̂ , ̂ ).

Firs/ proof. — Since A^eZ^p (<^, ^.)nB2. (^, (R), it follows from
Lemma 5.5 that A^ == A^i for some ^i in C^ (cR,, <^.). The argument,
used in the paragraph preceding the statement of Lemma 5.7, now shows
thaUeC^(^,^).

Second proof. — By Corollary 3.4, it is sufficient to show that, if (£*a)

is an orthogonal family of projections in ^l, and E = ^.E^ then ^ ^ (£a)

converges ultraweakly to ^ (E). By adding I — E to the family (£a),

we may assume that E ==^^Ey. = I. All the finite subsums of V? (£a)

lie in the ball in (R, with centre 0 and radius [| ^ [|. The ultraweak topology
on this ball is determined by the linear functionals ^x,y : A -><^A x, y^
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on ̂  where y lies in the dense linear subspace generated algebraically
by the ranges of the projections £'a. It is therefore sufficient to show that

2<W)^>=aGO^,</>
a

for such y ; equivalently, that ̂  £p \ (E^) converges ultraweakly to

•E|3 ^ (I), for each (3. Now

£p S (£a) = (AQ (£p, £,) + ^ (£p £,) _ ^ (£p) ̂ .

Since AS; is ultraweakly continuous in its second argument, we have

^£p S (£a) = (AQ (£p, J) + S (£p) - ^ (£p) = £p ^ (J),
a

proving the lemma.

REMARK 5.8. — The second proof of Lemma 5.7 did not need the full
force of the assumption that A^eZ^ (^, ^), since no use was made of
the ultraweak continuity of ^ in its first variable. By reasoning very
similar to the second proof of Lemma 5.7, one can show that, if
p € Z^ ((^, (^) and p is ultraweakly continuous in one variable, then
it is (separately) ultraweakly continuous in both variables [whence
p€Z^,^)].

For higher cohomology, the obvious analogue of Lemma 5.7 is false.
For example, if p == A^ with ^ in C<1 (^v, ^), but not in C^ (^, (R), then
p e Q (^, c^) and Ap (-.= A2 ^ = 0) lies in Z^ (^, ^l); but, by Lemma 5.7,
pdE C-^(^,^).

6. Applications to norm continuous cohomology

THEOREM 6.1. — If 31 is a unital C^-algebra acting on a Hilbert space
2€, and 3Vi is a two-sided dual normal ^--module, then

H^ (%, 3rC) - H^ (9I-, on) (n = 1, 2, ...).

Proof. — It follows, from Theorem 2.3, that, for n = 1, 2, .... the
restriction map in : ^ — •n \ 91 is a one to one linear mapping from
CS. Ctt-, ^) onto C, (31, :nz). Moreover, i, A = Ai,_, (n = 1, 2, ...),
provided 4 is interpreted as the identity mapping on OR [= C° (31, .)1l)1L
Thus in maps Z^ (9I-, ̂ ) onto Z^ (91, .m), BS, (31-, .m) ) onto
-BS. (31, ̂ ), and so induces an isomorphism between the quotient
spaces H^ (3I-, Jll) and H^, (31, ^U). This, with Theorem 5.6, shows
thatff? (3I-, ycC) ̂  H'i (31, .m).
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COROLLARY 6.2. — If a von Neumann algebra (^ is the ultraweak closure
of an amenable C^-subalgebra 91, then H^ (<^, 3Vi) = 0 (n == 1, 2, . . .)
/br every two-sided dual normal (^-module OVi.

Proof. — Since 91 is amenable, H^ (91, ;nz) == 0 (n = 1, 2, . . .); so the
result follows from Theorem 6.1.

COROLLARY 6.3. — If a von Neumann algebra (^ is the ultraweakly
closed linear span of an amenable subgroup V of its unitary group, then
H^ ( .̂, 3Vi) === 0 (n == 1, 2, . . .) for every two-sided dual normal (^-module OVi.

Proof. — The norm closed linear span of V is an amenable C*-algebra 91
([5], Proposition 7.8; [8], Theorem 3.3). Since 91-==^, the result
now follows from Corollary 6.2.

The following result generalises [8] (Theorem 3.1).

COROLLARY 6.4. — If ^ is a hyper finite von Neumann algebra, and
on is a two-sided dual normal (^-module, then H^ (<^, yd) = 0 (n=l, 2,...).

Proof. — Since (^ is the ultraweak closure of a uniformly hyperfinite
C*-subalgebra 91, and (as noted in Section 4) such an algebra 91 is amenable,
the result follows from Corollary 6.2.

COROLLARY 6.5. — If ^ is a type I von Neumann algebra, and 3Tc is
a two-sided dual normal (K-module, then H^ ((^, 3\\) = 0 (n === 1, 2, ...).

Proof. — We can express (X in the form Z g) ^l/ (g) Cy, where each cfi/
is a type I factor and each C, is an abelian von Neumann algebra. By
choosing a self-adjoint system of matrix units in cTly, we associate with
each element of (^j an infinite matrix. Given a finite subset F of the
diagonal matrix units, we denote by W (F) the group of all unitary
elements in cK./ whose matrices have + 1 in the diagonal position of each
column corresponding to a diagonal matrix unit not in F, a single entry
± 1 somewhere in each other column, and zeros elsewhere. Since W (F)
is finite and W (PiUFa) contains W (Fi) and W (Fa), the union Wy of
all W (Fys is an amenable group ([2], (F), p. 516). Moreover, the linear
span of Wj contains each matrix unit and is therefore ultraweakly dense
in (^j. With 01; the (abelian) unitary group of e^, and

^, = { W® U:W^W^ U e ^ / } ,

V/ has linear span ultraweakly dense in ^y (g) Cj. As a group, Vj is
isomorphic to the direct product Wj x OLy, and is therefore amenable
([2], (H), (E), p. 516). Finally, let V be the group of all unitary elements
1 Q) Vj in (^ for which each Vj lies in V/ and all but a finite set of V/s are
J. The linear span of V is ultraweakly dense in ^, and V is amenable
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since it is isomorphic to the restricted direct product of the V/s
([2], (F"), p. 517). By Corollary 6.3, H^ (^, 3Vi) = 0.

For the case in which 3Xi = ^l, the result of Corollary 6.5 was first
proved in [7] (Theorem 4.4) : another proof, by quite different methods,
was given in [5] (Proposition 7.14). This latter argument can be applied,
virtually unchanged, to give an alternative proof of Corollary 6.5 in
its present generality.

We conclude by noting the following consequence of Theorem 6.1
and Corollary 6.5 : if 91 is a unital C*-algebra acting on a Hilbert space
X, 91- is a type I von Neumann algebra and OVi is a two-sided dual
normal 9I--module, then H^ (91, OVc) = 0. In particular, H^ (91, 9I-) = 0
and H^ (91, ^ (^C)) == 0 (n = 1, 2, ...).
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